## edexcel

Mark Scheme (Results)
Summer 2015

Pearson Edexcel GCSE
In Mathematics B (2MB01)
Higher (Non-Calculator) Unit 2

## Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

## Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015
Publications Code UG042115
All the material in this publication is copyright
© Pearson Education Ltd 2015

## NOTES ON MARKI NG PRI NCI PLES

All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

Mark schemes should be applied positively.
3 All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e if the answer matches the mark scheme. Note that in some cases a correct answer alone will not score marks unless supported by working; these situations are made clear in the mark scheme. Examiners should be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

4 Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5 Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
6 Mark schemes will award marks for the quality of written communication (QWC).
The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

Comprehension and meaning is clear by using correct notation and labelling conventions.
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.
iii) organise information clearly and coherently, using specialist vocabulary when appropriate.

The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.

## With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Partial answers shown (usually indicated in the ms by brackets) can be awarded the method mark associated with it (implied).
Any case of suspected misread loses $A$ (and B) marks on that part, but can gain the M marks; transcription errors may also gain some credit. Send any such responses to review for the Team Leader to consider.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

## 8 Follow through marks

Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

## I gnoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

## Probability

Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.

## Linear equations

Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

Parts of questions
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

## Range of answers

Unless otherwise stated, when an answer is given as a range (e.g 3.5-4.2) then this is inclusive of the end points (e.g 3.5, 4.2) and includes all numbers within the range (e.g 4, 4.1)

The detailed notes in the mark scheme, and in practice/training material for examiners, should be taken as precedents over the above notes.

## Guidance on the use of codes within this mark scheme

M1 - method mark for appropriate method in the context of the question
A1 - accuracy mark
B1 - Working mark
C1 - communication mark
QWC - quality of written communication
oe - or equivalent
cao - correct answer only
ft - follow through
sc - special case
dep - dependent (on a previous mark or conclusion)
indep - independent
isw - ignore subsequent working

| 5MB2H/01 June 2015 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Working | Answer | Mark | Notes |
| 1 (a) |  | $5^{1 / 4}$ | 1 | B1 for $5^{1 / 4}$ oe |
| (b) |  | 12 | 2 | $\text { M1 for }(28 \div 7) \times 3 \text { oe }$ A1 cao |
| (c) |  | 4000 | 2 | M1 for 20 or 200 <br> A1 for 4000 - 4040 |
| 2 | $\begin{array}{cccccc} -2 & -1 & 0 & 1 & 2 & 3 \\ 7 & 5 & 3 & 1 & -1 & -3 \end{array}$ | Correct graph | 3 | (Table of values) <br> M1 for at least 2 correct attempts to find points by substituting values of $x$ M1 (dep) for plotting at least 2 of their points (any points plotted from their table must be correctly plotted) <br> A1 for correct line between $x=-2$ and $x=3$ <br> (No table of values) <br> M2 for at least 2 correct points (and no incorrect points) plotted OR line segment of $y=3-2 x$ drawn (ignore any additional incorrect segments) <br> (M1 for at least 3 correct points with no more than 2 incorrect points) <br> A1 for correct line between $x=-2$ and $x=3$ <br> (Use of $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$ ) <br> M2 line segment of $y=3-2 x$ drawn (ignore any additional incorrect segments) (M1 for line drawn with gradient of -2 OR line drawn with $y$ intercept of 3 and a negative gradient) <br> A1 for correct line between $x=-2$ and $x=3$ |


| 5MB2H/01 June 2015 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Working | Answer | Mark | Notes |
| 3 |  | 270 | 3 | M1 for $9 \div 0.1(=90)$ or $4.5 \div 1.5(=3)$ oe <br> M1 for " 3 " $\times$ " 90 " oe ( $=270$ ) <br> A1 cao <br> OR <br> M1 for $4.5 \div 0.1(=45)$ or $9 \div 1.5(=6)$ oe <br> M1 for " 6 " $\times$ " 45 " oe ( $=270$ ) <br> A1 cao <br> OR <br> M1 for $9 \times 4.5(=40.5)$ or $1.5 \times 0.1(=0.15)$ oe <br> M1 for " 40.5 " $\div 0.15$ " (=270) oe <br> A1 cao |
| 4 |  | 3, 5, 7 | 2 | M1 for at least two consecutive numbers substituted into $2 n+1$ or at least two of 3 , 5,7 <br> A1 cao |
| 5 |  | $150 \mathrm{~cm}^{3}$ | 3 | M1 for a complete method to find the volume A1 for 150 <br> B1 (indep) for $\mathrm{cm}^{3}$ |
| 6 | $\begin{gathered} 3000 \div 20=150 \\ 150 \div(14+1)=10 \\ 10 \div 0.5=20 \\ 20 \times 3.99 \end{gathered}$ | 79.80 | 4 | M1 for amount of petrol or oil or mixture M1 for use of ratio M1 (dep on M1, M1) for total cost of bottles A1 for 79.8(0) |


| 5MB2H/01 June 2015 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Working | Answer | Mark | Notes |
| $7 \quad \text { (a) }$ |  | $5 y+4$ | 2 | $\begin{aligned} & \text { M1 for } 3 \times y-3 \times 2 \text { or } 2 \times y+2 \times 5 \\ & \text { A1 cao } \end{aligned}$ |
| (b) |  | $w^{2}$ | 1 | B1 cao |
| (c) |  | $5(x+4)$ | 1 | B1 cao |
| 8 | $\begin{aligned} & 1.15 \times 2000(=2300) \\ & 1.10 \times 2300 \end{aligned}$ | 2530 | 3 | M1 for a correct method to find the amount at the end of the first year M1(dep) for a correct method to find the amount at the end of the second year A1 cao |
| 9 |  | Italy with reason | 3 | B1 for 5 miles $=8 \mathrm{~km}$ oe <br> M1 for change to consistent units from $70 \times r$ with $1.5 \leq r \leq 1.7$ or $130 \times s$ with $0.6 \leq s \leq 0.7$ <br> C1 for Italy identified and 112 kph stated or Italy identified and 81.(25) mph stated oe |


| 5MB2H/01 June 2015 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Working | Answer | Mark | Notes |
| *10 |  | 27 | 4 | M1 for $360 \div 5$ (=72) or $360 \div 8(=45)$ <br> M1 for ' 72 ' - '45' <br> A1 for $x=27$ <br> C1 (dep on M1) for sum of exterior angles of polygon is 360 degrees oe OR <br> M1 for $3 \times 180 \div 5(=108)$ or $6 \times 180 \div 8(=135)$ <br> M1 for ' 135 ' - '108' <br> A1 for $x=27$ <br> C1 (dep on M1) for sum of interior angles of polygon is $\underline{180(n-2)}$ oe degrees or $\underline{\text { angles }}$ in a triangle sum to $\underline{180}$ degrees <br> OR <br> M1 for $360 \div 8(=45)$ or $3 \times 180 \div 5(=108)$ <br> M1 for 180 - (' 108 '+'45') <br> A1 for $x=27$ <br> C1 (dep on M1) for sum of exterior angles of polygon is 360 degrees oe and angles on a straight line sum to $\underline{180}$ degrees |
| 11 |  | $\begin{gathered} 0.0025 \\ 2.5 \times 10^{-2} \\ 2.5 \times 10^{2} \\ 2500 \end{gathered}$ | 2 | M1 for converting all numbers to same form with at least one conversion correct A1 for fully correct order with correct numbers in any correct form (SC B1 if one number incorrectly placed or all 4 numbers listed in reverse order) |
| $12 \quad \text { (a) }$ <br> (b) |  | $(5,3,4)$ <br> point |  | B1 cao <br> B1 cao |


| 5MB2H/01 June 2015 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Working | Answer | Mark | Notes |
| 13 |  | $x^{2}+10 x+22$ | 4 | M1 for $(x+8)-(x+5)(=3)$ or $(x+4)-(x+2)(=2)$ <br> M1 for area of one rectangle $\operatorname{eg}(x+2)(x+5)\left(=x^{2}+7 x+10\right)$ <br> M1 for complete method to find area e.g. $(x+2)(x+5)+3(x+4)\left(=x^{2}+7 x+10+\right.$ <br> $3 x+12$ ) <br> A1 cao |
| $14 \quad \text { (a) }$ <br> (b) |  | $\begin{gathered} 1 \\ \frac{1}{16} \end{gathered}$ | $\begin{aligned} & 1 \\ & 2 \end{aligned}$ | B1 cao <br> M1 for two of cube root, square, reciprocal A1 cao |
| (a) <br> (b) <br> (c) |  | $(y-7)(y+2)$ $\sqrt{5}+29$ $\sqrt{3}$ | $2$ <br> 2 <br> 2 | B2 cao <br> (B1 for $(y \pm 7)(y \pm 2)$ ) <br> M1 expand brackets, with at least 3 correct terms including signs or 4 correct terms ignoring signs eg $2 \sqrt{5} \times 3 \sqrt{5}-2 \sqrt{5}+3 \sqrt{5}-1 \times 1$ <br> A1 for $\sqrt{5}+29$ or $29+\sqrt{5}$ <br> M1 for $\frac{6}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$ oe or $\sqrt{12}=2 \sqrt{3}$ <br> A1 cao |


| 5MB2H/01 June 2015 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Question | Working | Answer | Mark | Notes |
| 16 |  | $y=2 x-1$ | 4 | M1 for $\left(\frac{6+-2}{2}, \frac{1+5}{2}\right)$ oe <br> M1 for $\frac{-1}{-0.5}$ oe (=2) <br> M1 (dep on previous M1) for using $y=$ ' 2 ' $x+c$ with their coordinates for the midpoint used correctly to find $c$ $\text { A1 for } y=2 x-1 \text { oe }$ |
| *17 |  | proof with reasons | 5 | M1 for using $x$ oe for $A O B$ or $C P B$ or consistent use of three letter notation M1 for correct use of at least one circle theorem or for extending $P R$ and $C A$ to meet at ' $X$ ' and using triangles $O B X$ and $P C X$ <br> A1 for correct proof <br> C2 for fully correct reasons for each stage of proof <br> (C1 for any relevant circle theorem reason) <br> Possible reasons: <br> Angles in a triangle add up to $180^{\circ}$ <br> Angles in a quadrilateral ( 4 sided shape) add up to $360^{\circ}$ <br> Angles on a straight line add up to $\underline{180^{\circ}}$ <br> The tangent to a circle is perpendicular $\left(90^{\circ}\right)$ to the radius (diameter) <br> Tangents from an external point are equal in length. <br> Reasons must be relevant for method shown. |

## Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.
The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:
Angles: $\pm 5$ 응
Measurements of length: $\pm 5 \mathrm{~mm}$

| PAPER: 5MB2H_01 |  |  |  |
| :---: | :---: | :---: | :---: |
| Question |  | Modification | Notes |
| Q2 |  | Grid has been enlarged. | (Table of values) <br> M1 for at least 2 correct attempts to find points by substituting values of $x$ M1 (dep) for plotting at least 2 of their points (any points plotted from their table must be correctly plotted) <br> A1 for correct line between $x=-2$ and $x=3$ <br> (No table of values) <br> M2 for at least 2 correct points (and no incorrect points) plotted OR line segment <br> of $y=3-2 x$ drawn (ignore any additional incorrect segments) <br> (M1 for at least 3 correct points with no more than 2 incorrect points) <br> A1 for correct line between $x=-2$ and $x=3$ <br> (Use of $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{c}$ ) <br> M2 line segment of $y=3-2 x$ drawn (ignore any additional incorrect segments) <br> (M1 for line drawn with gradient of -2 OR line drawn with $y$ intercept of 3 and a negative gradient) <br> A1 for correct line between $x=-2$ and $x=3$ |


| PAPER: 5MB2H_01 |  |  |  |
| :---: | :---: | :---: | :---: |
| Question |  | Modification | Notes |
| Q3 |  | Diagram has been enlarged. <br> 9 metres moved to top of diagram <br> 4.5 metres moved to the left of diagram. | M1 for $9 \div 0.1(=90)$ or $4.5 \div 1.5(=3)$ oe <br> M1 for " 3 " $\times$ " 90 " oe ( $=270$ ) <br> A1 cao <br> OR <br> M1 for $4.5 \div 0.1(=45)$ or $9 \div 1.5(=6)$ oe <br> M1 for " 6 " $\times$ " 45 " oe ( $=270$ ) <br> A1 cao <br> OR <br> M1 for $9 \times 4.5(=40.5)$ or $1.5 \times 0.1(=0.15)$ oe <br> M1 for " 40.5 " $\div$ " 0.15 " ( $=270$ ) oe <br> A1 cao |
| Q5 |  | Model provided for all candidates. Also a diagram is provided for MLP. Wording added: right-angled before triangular prism. | M1 for a complete method to find the volume A1 for 150 <br> B 1 (indep) for $\mathrm{cm}^{3}$ |

## PAPER: 5MB2H_01

| Question |  | Modification | Notes |
| :---: | :---: | :---: | :---: |
| Q7 | (c) | MLP $x$ changed to $y$. | B1 cao |
| Q10 |  | Diagram has been enlarged. | M1 for $360 \div 5(=72)$ or $360 \div 8(=45)$ <br> M1 for ' 72 ' - '45' <br> A1 for $x=27$ <br> C1 (dep on M1) for sum of exterior angles of polygon is $\underline{360}$ degrees oe OR <br> M1 for $3 \times 180 \div 5(=108)$ or $6 \times 180 \div 8(=135)$ <br> M1 for '135' - '108' <br> A1 for $x=27$ <br> C1 (dep on M1) for sum of interior angles of polygon is $180(n-2)$ oe degrees or angles in a triangle sum to $\underline{180}$ degrees <br> OR <br> M1 for $360 \div 8(=45)$ or $3 \times 180 \div 5(=108)$ <br> M1 for 180 - (' 108 '+'45') <br> A1 for $x=27$ <br> C1 (dep on M1) for sum of exterior angles of polygon is 360 degrees oe and angles on a straight line sum to 180 degrees |
| Q12 | (a) (b) | Model provided for all candidates. <br> Also enlarged diagram provided for MLP. <br> On the model and diagram the point C is marked in the correct place, with an additional mark either side of the C <br> Question has been changed: <br> "The point C has been marked on the cuboid. <br> Write down the co-ordinates of point C". <br> (1 mark) <br> ( $\qquad$ $\qquad$ $\qquad$ ) | B1 cao <br> B1 cao |

## PAPER: 5MB2H_01

|  | Modification | Notes |
| :---: | :---: | :---: |
| Q13 | Diagram has been enlarged. MLP $x$ changed to $y$. | M1 for $(x+8)-(x+5)(=3)$ or $(x+4)-(x+2)(=2)$ <br> M1 for area of one rectangle $\operatorname{eg}(x+2)(x+5)\left(=x^{2}+7 x+10\right)$ <br> M1 for complete method to find area e.g. $(x+2)(x+5)+3(x+4)\left(=x^{2}+7 x+10\right.$ $+3 x+12)$ <br> A1 cao |
| Q17 | Diagram has been enlarged. | M1 for using $x$ oe for $A O B$ or $C P B$ or consistent use of three letter notation M1 for correct use of at least one circle theorem or for extending $P R$ and $C A$ to meet at ' $X$ ' and using triangles $O B X$ and $P C X$ <br> A1 for correct proof <br> C2 for fully correct reasons for each stage of proof <br> (C1 for any relevant circle theorem reason) <br> Possible reasons: <br> Angles in a triangle add up to $180^{\circ}$ <br> Angles in a quadrilateral ( 4 sided shape) add up to $360^{\circ}$ <br> Angles on a straight line add up to $180^{\circ}$ <br> The tangent to a circle is perpendicular $\left(90^{\circ}\right)$ to the radius (diameter) <br> Tangents from an external point are equal in length. <br> Reasons must be relevant for method shown. |

